Quantum Numbers (and their meaning)

Solution of the Schrödinger equation for the Hydrogen atom
 $$
\psi_{n \ell m_{\ell}}(r, \theta, \phi)=R_{n \ell}(r) Y_{\ell m_{\ell}}(\theta, \phi)
$$

- The three quantum numbers:
- $n \quad$ Principal quantum number
$-\ell \quad$ Orbital angular momentum quantum number
- $m_{\ell} \quad$ Magnetic quantum number
- The boundary conditions:
- $n=1,2,3,4, \ldots$
$-\ell=0,1,2,3, \ldots, n-1$
$-m_{\ell}=-\ell,-\ell+1, \ldots, 0,1, \ldots, \ell-1, \ell$

> Integer
> Integer
> Integer

- The restrictions for quantum numbers:
- $n>0$
$-\ell<n$
$-\left|m_{\ell}\right| \leq \ell$

Principal Quantum Number n

- In the hydrogen atom, this is the number of the Bohr orbit ($n=1,2,3 \ldots$ no upper limit)
- Associated with the solution of $R(r)$
- Quantized energy: $E_{n}=\frac{-\mu}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}\right)^{2} \frac{1}{n^{2}}=-\frac{E_{0}}{n^{2}}$
- (-) sign: proton-electron system bound

Orbital (Quantum Momentum) quantum number ℓ

- Associated with the solutions of $R(r)$ and $f(\theta)$
- Boundary Conditions: $\ell=0,1, \ldots, n-1$
- Classical Orbital Momentum: $\vec{L}=\vec{r} \times \vec{p}$
- Quantum Orbital Momentum: $L=\sqrt{\ell(\ell+1)} \hbar$
- $\ell=0$ state $\rightarrow L=0 \quad$ This disagrees with Bohr's semiclassical "planetary" model of electrons orbiting a nucleus $L=n \hbar$.

More on quantum number ℓ

- Energy is independent of the quantum number ℓ, we say the energy level is degenerate with respect to ℓ. Note: only true for the Hydrogen atom.
- States:

- $\mathrm{l}=$	0	1	2	3	4	5	
- Letter	$\begin{gathered} \text { s } \\ \text { (sharp) } \end{gathered}$	p	$\begin{gathered} d \\ \text { (diffuse) } \end{gathered}$	f	g	h	\ldots
	(principal)		(fundamental)				

- Atomic states are referred to by their n and ℓ.
- A state with $n=2$ and $\ell=1$ is called a $2 p$ state.
- The boundary conditions require $n>\ell$.

The Magnetic quantum number m_{ℓ}

- The angle ϕ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_{p} is an integer and related to the z component of

$$
L_{z}=m_{\ell} \hbar
$$

- The relationship of L, L_{z}, ℓ, and m_{ℓ} for $\ell=2$.
- $L=\sqrt{\ell(\ell+1)} h=\sqrt{6} \hbar$ is fixed because L_{z} is quantized.
- Only certain orientations of \vec{L} are possible and this is called space quantization.

Note: One cannot know L exactly, this would violate the uncertainty principle.

Intrinsic Spin m_{s}

- Samuel Goudsmit and George Uhlenbeck in Holland proposed that the electron must have an intrinsic angular momentum and therefore a magnetic moment (1925)

- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light!

- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an intrinsic spin quantum number $s=1 / 2$. [Number of possible values: $2 \mathrm{~s}+1=2 \rightarrow \mathrm{~m}_{\mathrm{s}}=-1 / 2$ or $\left.\mathrm{m}_{\mathrm{s}}=1 / 2\right]$

Intrinsic Spin m_{s}

- Does not appear from the solutions of the Schrödinger equation
- Appears when solving the problem in a relativistic way
- For the electron: $m_{s}=+1 / 2$ or $m_{s}=-1 / 2$
- The spinning electron reacts similarly to the orbiting electron in a magnetic field.

Understood?

(a) If the principal quantum number n for a certain electronic state is equal to 3 , what are the possible values of the orbital (angular momentum) quantum number ℓ ?

$$
\ell=0,1,2 \ldots,(n-1) \rightarrow \ell=0,1,2
$$

(b) If the orbital quantum number ℓ for a certain electronic state is equal to 2 , what are the possible values for the magnetic quantum number m_{e} ?

$$
\mathrm{m}_{l}=-\ell,-(\ell-1), \ldots, l-1, \ell \rightarrow \mathrm{~m}_{l}=-2,-1,0,1,2
$$

(c) How many distinct electronic states are there with $\mathrm{n}=2$?

$$
\begin{array}{lll}
\left(n, l, m_{e}, m_{s}\right): & (2,0,0,-1 / 2) & (2,0,0,1 / 2) \\
& (2,1,-1,-1 / 2) & (2,1,-1,1 / 2) \\
& (2,1,0,-1 / 2) & (2,1,0,1 / 2) \\
& (2,1,1,-1 / 2) & (2,1,1,1 / 2)
\end{array}
$$

Atomic Fine Structure

- Experimentally: By the 1920s, a fine structure in the spectra lines of Hydrogen and other atoms has been observed. Spectra lines appeared to be split in the presence of an external magnetic field.

INTERPRETATION:

- Energy is independent of the quantum number ℓ
\rightarrow the energy level is degenerate with respect to l
- Example: Considering $n=2$ and $\ell=1$
$\rightarrow \mathrm{m}_{\ell}=-1,0,1$ e.g. 3 quantum states are degenerate at the same energy

These 3 magnetic states would behave differently under
a magnetic field resulting in the degeneracy being lifted!

Magnetic Moment

- Model:
- electron circulating around the nucleus \rightarrow Loop of current I $=d q / d t=q / T$
- T, time it takes for the electron to make one rotation: $T=2 \pi r / v$
- Introducing $p=m v \rightarrow T=2 \pi r m / p$
- Magnetic Moment induced: $\mu=\mathrm{IA}=(\mathrm{qp} / 2 \pi \mathrm{mr})\left(\pi \mathrm{r}^{2}\right)$
- Simplification: $\mu=(q / 2 m) r p$, introducing $L=r p \rightarrow \mu=(q / 2 m)|\vec{L}|$

Magnetic moment: $\vec{\mu}=-\frac{e}{2 m} \vec{L}$

The (Normal) Zeeman Effect (I)

- Potential energy of the dipole created by the electron orbiting around the nucleus (under a magnetic field \vec{B}):

$$
V_{B}=-\vec{\mu} \cdot \vec{B}
$$

- One can only know one component of $\vec{L}:\left(L_{z}=m_{l} \hbar\right)$
- Along z, the magnetic moment becomes:

$$
\mu_{z}=\frac{e \hbar}{2 m} m_{\ell}=-\mu_{\mathrm{B}} \underbrace{\substack{\mu_{\mathrm{B}}=9.274 \times 10^{-24} \mathrm{~J} / \mathrm{T}}}_{\substack{m_{\ell}}}
$$

- Quantization: $V_{B}=-\mu_{z} B=+\mu_{\mathrm{B}} m_{\ell} B$

The (Normal) Zeeman Effect (II)

- When a magnetic field is applied, the $2 p$ level of atomic hydrogen is split into three different energy states with energy difference of $\Delta E=\mu_{\mathrm{B}} B \Delta \mathrm{~m}_{\boldsymbol{q}}$.

Potential energy of the dipole: $V_{B}=-\mu_{z} B=+\mu_{\mathrm{B}} m_{\ell} B$

$\boldsymbol{m}_{\boldsymbol{e}}$	Energy
1	$E_{0}+\mu_{\mathrm{B}} B$
0	E_{0}
-1	$E_{0}-\mu_{\mathrm{B}} B$

$$
\begin{array}{r}
n=2 \frac{\ell=1}{} \\
\vec{B}=0
\end{array}
$$

Fine Structure

Fine Structure

Transition $2 p \rightarrow 1$ s

Stern \& Gerlach Experiment (1922)

- An atomic beam of particles in the $\ell=1$ state pass through a magnetic field along the z direction.

$$
V_{B}=-\mu_{z} B \quad F_{z}=-\left(d V_{B} / d z\right)=\mu_{z}(d B / d z)
$$

- The $m_{\ell}=+1$ state will be deflected down, the $m_{\ell}=-1$ state up, and the $m_{\ell}=0$ state will be undeflected.
- If the space quantization were due to the magnetic quantum number m_{ℓ}, m_{ℓ} states is always odd $(2 \ell+1)$ and should produce odd number of lines \rightarrow But it doesn't. Why?

