Quantum Numbers (and their meaning)

Solution of the Schrödinger equation for the Hydrogen atom $\psi_{n\ell m_{\ell}}(r, \theta, \phi) = R_{n\ell}(r)Y_{\ell m_{\ell}}(\theta, \phi)$

- The three quantum numbers:
 - *n* Principal quantum number
 - *l* Orbital angular momentum quantum number
 - m_{l} Magnetic quantum number
- The boundary conditions:

$- n = 1, 2, 3, 4, \ldots$	Integer
$-\ell = 0, 1, 2, 3, \ldots, n-1$	Integer
$- m_{\ell} = -\ell, -\ell + 1, \dots, 0, 1, \dots, \ell - 1, \ell$	Integer

• The restrictions for quantum numbers:

$$- n > 0$$

- $\ell < n$
- $|m_{\ell}| \leq \ell$

Principal Quantum Number n

- In the hydrogen atom, this is the number of the Bohr orbit (n=1,2,3... no upper limit)
- Associated with the solution of R(r)

• Quantized energy:
$$E_n = \frac{-\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_0\hbar}\right)^2 \frac{1}{n^2} = -\frac{E_0}{n^2}$$

• (-) sign: proton-electron system bound

Orbital (Quantum Momentum) quantum number ℓ

• Associated with the solutions of R(r) and $f(\theta)$

– Boundary Conditions: $\ell = 0, 1, ..., n-1$

- Classical Orbital Momentum: $\vec{L} = \vec{r} \times \vec{p}$
- Quantum Orbital Momentum: $L = \sqrt{\ell(\ell+1)}\hbar$
- l = 0 state $\rightarrow L = 0$

This disagrees with Bohr's semiclassical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

More on quantum number ℓ

- Energy is independent of the quantum number l, we say the energy level is degenerate with respect to l. <u>Note</u>: only true for the Hydrogen atom.
- States:

- Atomic states are referred to by their *n* and *l*.
- A state with n = 2 and $\ell = 1$ is called a 2p state.
- The boundary conditions require $n > \ell$.

The Magnetic quantum number m_{ℓ}

- The angle ϕ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_l is an integer and related to the *z* component of L_z $L_z = m_l \hbar$

© 2006 Brooks/Cole - Thomson

- The relationship of *L*, L_z , ℓ , and m_ℓ for $\ell = 2$.
- $L = \sqrt{\ell(\ell+1)}\hbar = \sqrt{6}\hbar$ is fixed because L_z is quantized.
- Only certain orientations of *L* are possible and this is called space quantization.

Note: One cannot know L exactly, this would violate the uncertainty principle.

Intrinsic Spin m_s

 Samuel Goudsmit and George Uhlenbeck in Holland proposed that the electron must have an intrinsic angular momentum and therefore a magnetic moment (1925)

 Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light!

• In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an **intrinsic spin quantum number** $s = \frac{1}{2}$. [Number of possible values: $2s+1 = 2 \rightarrow m_s = \frac{1}{2}$ or $m_s = \frac{1}{2}$]

Intrinsic Spin m_s

- Does not appear from the solutions of the Schrödinger equation
- Appears when solving the problem in a relativistic way
- For the electron: $m_s = +\frac{1}{2}$ or $m_s = -\frac{1}{2}$
- The spinning electron reacts similarly to the orbiting electron in a magnetic field.

Understood ?

(a) If the principal quantum number n for a certain electronic state is equal to 3, what are the possible values of the orbital (angular momentum) quantum number ℓ ?

 $\ell = 0, 1, 2..., (n-1) \rightarrow \ell = 0, 1, 2$

(b) If the orbital quantum number ℓ for a certain electronic state is equal to 2, what are the possible values for the magnetic quantum number m_{ℓ} ?

 $m_{\ell} = -\ell, -(\ell-1), \dots, \ell-1, \ell \rightarrow m_{\ell} = -2, -1, 0, 1, 2$

(c) How many distinct electronic states are there with n=2?

 $\begin{array}{rl} (n,\ell,m_{\ell},m_{s}): & (2,0,0,-\frac{1}{2}) & (2,0,0,\frac{1}{2}) \\ & (2,1,-1,-\frac{1}{2}) & (2,1,-1,\frac{1}{2}) \\ & (2,1,0,-\frac{1}{2}) & (2,1,0,\frac{1}{2}) \\ & (2,1,1,-\frac{1}{2}) & (2,1,1,\frac{1}{2}) \end{array}$

Atomic Fine Structure

• Experimentally: By the 1920s, a fine structure in the spectra lines of Hydrogen and other atoms has been observed. Spectra lines appeared to be split in the presence of an external magnetic field.

INTERPRETATION:

• Energy is independent of the quantum number ℓ

 \rightarrow the energy level is degenerate with respect to ℓ

• Example: Considering n=2 and l=1

 \rightarrow m_l = -1,0,1 e.g. 3 quantum states are degenerate at the same energy

These 3 magnetic states would behave differently under a magnetic field resulting in the degeneracy being lifted !

- Model:
 - electron circulating around the nucleus → Loop of current I = dq/dt = q/T
 - T, time it takes for the electron to make one rotation: $T = 2\pi r/v$
 - Introducing $p = mv \rightarrow T = 2\pi rm/p$
 - Magnetic Moment induced: $\mu = IA = (qp/2\pi mr)(\pi r^2)$
 - Simplification: $\mu = (q/2m)rp$, introducing L=rp $\rightarrow \mu = (q/2m)|\vec{L}|$

Magnetic moment:
$$\vec{\mu} = -\frac{e}{2m}\vec{L}$$

The (Normal) Zeeman Effect (I)

• Potential energy of the dipole created by the electron orbiting around the nucleus (under a magnetic field \vec{B}):

$$V_B = -\vec{\mu} \cdot \vec{B}$$

- One can only know one component of \vec{L} : $(L_z = m_l \hbar)$
- Along z, the magnetic moment becomes:

$$\mu_z = \frac{e\hbar}{2m} m_\ell = -\mu_B m_\ell$$
Bohr Magneton

$$\mu_B = 9.274 \times 10^{-24} \text{ J/T}$$

• Quantization: $V_B = -\mu_z B = +\mu_B m_\ell B$

The (Normal) Zeeman Effect (II)

• When a magnetic field is applied, the 2*p* level of atomic hydrogen is split into three different energy states with energy difference of $\Delta E = \mu_B B \Delta m_t$.

Potential energy of the dipole: $V_B = -\mu_z B = +\mu_{
m B} m_\ell B$

Fine Structure

Stern & Gerlach Experiment (1922)

• An atomic beam of particles in the l = 1 state pass through a magnetic field along the *z* direction.

- The $m_l = +1$ state will be deflected down, the $m_l = -1$ state up, and the $m_l = 0$ state will be undeflected.
- If the space quantization were due to the magnetic quantum number m_ℓ, m_ℓ states is always odd (2ℓ + 1) and should produce odd number of lines → But it doesn't. Why?