
Quantum Numbers
(and their meaning)



Solution of the Schrödinger 
equation for the Hydrogen atom

• The three quantum numbers:
– n Principal quantum number
–

ℓ

Orbital angular momentum quantum number
– m ℓ Magnetic quantum number

• The boundary conditions:
– n = 1, 2, 3, 4, . . . Integer
–

ℓ
 = 0, 1, 2, 3, . . . , n − 1 Integer

– m ℓ = −

ℓ
, −

ℓ
 + 1, . . . , 0, 1, . . . , 

ℓ
 − 1, 

ℓ
Integer

• The restrictions for quantum numbers:
– n > 0
–

ℓ
 < n

– |m ℓ| ≤
 

ℓ



Principal Quantum Number n

• In the hydrogen atom, this is the number of the 
Bohr orbit (n=1,2,3… no upper limit)

• Associated with the solution of R(r)

• Quantized energy:

• (-) sign: proton-electron system bound



Orbital (Quantum Momentum) 
quantum number llll

• Associated with the solutions of R(r) and f(θ)

– Boundary Conditions: l = 0,1,…, n-1

• Classical Orbital Momentum:

• Quantum Orbital Momentum:

• l = 0 state � L = 0 This disagrees with Bohr’s semiclassical
“planetary” model of electrons orbiting a 
nucleus L = n

ħ
.



More on quantum number l

• Energy is independent of the quantum number l, we say the energy 

level is degenerate with respect to l. Note: only true for the 
Hydrogen atom.

• States:

– l = 0 1 2 3 4 5 …

– Letter s p d f g h …

• Atomic states are referred to by their n and 

ℓ
.

• A state with n = 2 and 
ℓ

= 1 is called a 2p state.
• The boundary conditions require n > 

ℓ
.

(sharp)

(principal)

(diffuse)

(fundamental)



The Magnetic quantum number ml

� The relationship of L, Lz, 

ℓ
, and 

m ℓ for 

ℓ

 = 2.
� is fixed 

because Lz is quantized.
� Only certain orientations of     

are possible and this is called 
space quantization.  

• The angle    is a measure of the rotation about the z axis.
• The solution for specifies that m ℓ is an integer and 

related to the z component of L.

Note: One cannot know L exactly, this
would violate the uncertainty principle.



Intrinsic Spin ms

• Samuel Goudsmit and George Uhlenbeck in Holland 
proposed that the electron must have an intrinsic angular 
momentum and therefore a magnetic moment (1925)

• Paul Ehrenfest showed that the surface of the spinning 
electron should be moving faster than the speed of light!

• In order to explain experimental data, Goudsmit and 
Uhlenbeck proposed that the electron must have an 
intrinsic spin quantum number s = ½. [ Number of 
possible values: 2s+1 = 2 � ms=-½ or ms=½]



Intrinsic Spin ms

• Does not appear from the solutions of the Schrödinger 
equation

• Appears when solving the problem in a relativistic way 

• For the electron: ms = +½ or ms = -½

• The spinning electron reacts similarly to 
the orbiting electron in a magnetic field.



Understood ?
(a) If the principal quantum number n for a certain electronic state is 

equal to 3, what are the possible values of the orbital (angular
momentum) quantum number llll ?

(b) If the orbital quantum number llll for a certain electronic state is 
equal to 2, what are the possible values for the magnetic quantum 
number ml?

(c) How many distinct electronic states are there with n=2?

l = 0,1,2…,(n-1) � l = 0,1,2

ml = -l,-(l-1),…,l-1,l� ml = -2,-1,0,1,2

(n,l,ml,ms): (2,0,0,-½) (2,0,0,½)
(2,1,-1,-½) (2,1,-1, ½)
(2,1,0,-½) (2,1,0, ½)
(2,1,1,-½) (2,1,1, ½)



Atomic Fine Structure

• Experimentally: By the 1920s, a fine structure in the spectra lines of 
Hydrogen and other atoms has been observed. Spectra lines 
appeared to be split in the presence of an external magnetic field.

INTERPRETATION:

• Energy is independent of the quantum number l

� the energy level is degenerate with respect to l

• Example: Considering n=2 and l =1

� ml = -1,0,1 e.g. 3 quantum states are degenerate at the same 
energy

These 3 magnetic states would behave differently under 
a magnetic field resulting in the degeneracy being lifted !



Magnetic Moment

• Model: 
– electron circulating around the nucleus � Loop of 

current I  = dq/dt = q/T
• T, time it takes for the electron to make one rotation: T = 2πr/v
• Introducing p = mv � T = 2πrm/p

– Magnetic Moment induced: µ = IA = (qp/2πmr)(πr2)
• Simplification: µ = (q/2m)rp, introducing L=rp � µ = (q/2m)|L|

Magnetic moment:



The (Normal) Zeeman Effect (I)

• Potential energy of the dipole created by the electron 
orbiting around the nucleus (under a magnetic field B):

• One can only know one component of L: (Lz = ml )

• Along z, the magnetic moment becomes:

• Quantization:

Bohr Magneton
µB = 9.274 x 10-24 J/T



The (Normal) Zeeman Effect (II)

• When a magnetic field is applied, the 2p level of 
atomic hydrogen is split into three different energy 
states with energy difference of E = BB m ℓ.

E0 − �
BB−1

E00

E0 + �
BB1

Energym ℓ
Fine Structure

Potential energy of the dipole:



Fine Structure
Transition 2p � 1s



Stern & Gerlach Experiment (1922)

• An atomic beam of particles in the 

ℓ
= 1 state pass through a magnetic 

field along the z direction.

• The m ℓ = +1 state will be deflected down, the m ℓ = −1 state up, and the 
m ℓ = 0 state will be undeflected.

• If the space quantization were due to the magnetic quantum number m ℓ, 
m ℓ states is always odd (2

ℓ
+ 1) and should produce odd number of 

lines � But it doesn’t. Why?

z


